1. 데이터 전처리(Data Preprocessing)설명: 모델의 성능은 입력 데이터의 품질에 크게 좌우된다. 데이터의 전처리는 모델이 데이터를 더 잘 이해하고 학습할 수 있도록 도와준다.방법:데이터 정규화/표준화: 입력 데이터의 스케일을 맞춰 모델이 특정 특징에 과도하게 의존하지 않도록 한다.결측치 처리: 결측값을 적절히 처리하거나 제거하여 모델의 예측 성능을 저하시키지 않도록 한다.특징 엔지니어링(Feature Engineering): 중요한 특징을 새롭게 만들거나, 불필요한 특징을 제거하여 데이터의 품질을 높인다.효과: 데이터의 품질이 개선되면 모델이 더 잘 학습할 수 있고, 오버피팅(overfitting)이나 언더피팅(underfitting)을 줄일 수 있다.2. 특징 선택(Feature Sel..