본문 바로가기 메뉴 바로가기

제리코드르렁

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

제리코드르렁

검색하기 폼
  • 분류 전체보기 (134)
    • AI Development (29)
      • 머신러닝 딥러닝 (5)
      • 자연어처리 (12)
      • 자주쓰는 코드 (6)
      • 통계분석 (1)
      • 라이브러리 (1)
    • Computer Science (7)
      • 컴퓨터 구조 (5)
      • 운영체제 (1)
    • Web Development (83)
      • React (7)
      • vue (59)
      • TypeScript (2)
      • JAVA (1)
    • Github (2)
    • ElasticSearch (0)
  • 방명록

dl (7)
하이퍼파라미터 튜닝 후 모델 성능 저하 원인

과적합(Overfitting): 하이퍼파라미터를 너무 세밀하게 조정한 경우, 모델이 학습 데이터에 지나치게 맞추어져서 일반화 능력이 떨어질 수 있다. 이로 인해 새로운 데이터에 대한 성능이 저하될 수 있다.탐색 공간의 오류(Search Space Issue): 하이퍼파라미터 튜닝 시 잘못된 하이퍼파라미터 범위나 값들을 탐색할 수 있다. 예를 들어, 학습률이 너무 낮거나 높게 설정되면 최적화 과정에서 문제가 발생할 수 있다.데이터의 불균형(Data Imbalance): 하이퍼파라미터 튜닝 과정에서 특정 클래스나 패턴에 대한 가중치가 과도하게 조정되어, 모델이 데이터의 일부에만 적응할 수 있다. 이로 인해 전체적인 성능이 저하될 수 있다.과도한 복잡성(Too Much Complexity): 하이퍼파라미터를 ..

AI Development 2024. 9. 3. 08:18
하이퍼파라미터 튜닝방법

GridSearchCV, RandomizedSearchCV, 그리고 Bayesian Optimizer는 머신러닝 모델의 하이퍼파라미터 튜닝을 위한 방법들이다. 각 방법은 특정 상황에서 유리하거나 불리할 수 있으며, 이러한 방법들을 비유를 통해 이해하면 더 쉽게 그 차이점을 파악할 수 있다.1. GridSearchCV개념: GridSearchCV는 설정된 하이퍼파라미터의 모든 조합을 일일이 테스트하여 최적의 조합을 찾는 방법이다. 예를 들어, 두 개의 하이퍼파라미터가 있고 각각 3개의 값을 가진다면, 총 3x3=9개의 조합을 모두 시도해 보는 것이다.비유: 축구장에서 골을 넣기 위해 여러 위치에서 슛을 해보는 것과 같다. 모든 위치에서 슛을 해본다면, 가장 정확한 위치를 찾을 수 있다. 그러나 모든 위치에..

AI Development/머신러닝 딥러닝 2024. 9. 2. 17:21
XGBoost

XGBoost는 "Extreme Gradient Boosting"의 약자로, 머신러닝에서 주로 사용되는 매우 강력하고 효율적인 알고리즘이다. XGBoost는 회귀와 분류 문제 모두에 사용할 수 있으며, 특히 대규모 데이터 세트에서 뛰어난 성능을 보이는 것으로 유명하다. 개념XGBoost는 여러 개의 약한 학습기(보통 결정 트리)를 결합하여 강력한 모델을 만드는 앙상블 학습 기법의 일종이다. 앙상블 학습은 여러 개의 모델을 결합해 더 좋은 성능을 얻는 방법을 의미한다. XGBoost는 특히 그래디언트 부스팅(Gradient Boosting)이라는 앙상블 방법을 사용하며, 이는 각 모델이 이전 모델의 오류를 줄이는 방향으로 학습하는 것을 의미한다.비유XGBoost를 비유하자면, 시험 준비 과정에서의 피드백을..

AI Development/머신러닝 딥러닝 2024. 9. 2. 11:12
로짓함수 (Logit Function)

이 함수는 로지스틱 회귀에서 확률을 계산하는 데 사용되며, 주어진 입력 값이 특정 클래스 (예: 1 또는 0)에 속할 확률을 나타낸다.여기서 p는 특정 사건이 발생할 확률을 의미한다.이 수식은 p와 1-p의 비율 (오즈 비율)을 로그 변환한 값이다.로그 변환을 통해 함수의 결과는 실수 전체를 나타낼 수 있게 된다.  유도과정1. 확률의 정의우선, 어떤 사건이 발생할 확률 ppp가 주어졌다고 가정한다. 이 확률은 다음과 같이 표현된다:2. 오즈 비율(Odds Ratio)오즈 비율은 사건이 발생할 확률 p와 사건이 발생하지 않을 확률 1−p의 비율로 정의된다:오즈 비율은 사건이 발생할 가능성과 발생하지 않을 가능성의 비율을 나타내며, 이 값은 0부터 무한대까지의 값을 가질 수 있다.3. Logit 함수 정의..

AI Development/머신러닝 딥러닝 2024. 8. 30. 13:21
하이퍼파라미터 (Hyperparameter)

하이퍼파라미터는 모델이 학습을 할 때 사용되는 설정값들로, 모델 학습 과정 외부에서 설정되는 변수입니다.모델의 구조나 학습 방식에 영향을 미치는 값들을 의미하며, 이 값들은 학습 과정에서 변경되지 않습니다.예시:학습률(learning rate): 모델이 학습할 때, 가중치(weight)를 얼마나 크게 또는 작게 변경할지를 결정하는 값입니다.배치 크기(batch size): 한 번에 모델이 학습할 데이터의 양을 의미합니다. 예를 들어, 배치 크기가 32라면 한 번의 학습에서 32개의 데이터를 사용하게 됩니다.에포크 수(epoch): 전체 데이터셋을 몇 번 반복해서 학습할지를 결정하는 값입니다.하이퍼파라미터는 모델의 성능에 큰 영향을 미치기 때문에, 적절한 값을 찾기 위해 여러 번 실험을 통해 최적화를 시도..

AI Development/머신러닝 딥러닝 2024. 8. 14. 09:03
파인튜닝 (fine-tunning)

파인튜닝(fine-tuning)은 인공지능(AI) 및 머신러닝(ML)에서 매우 중요한 개념으로, 사전 학습된 모델(pre-trained model)을 특정 작업이나 도메인에 맞춰 성능을 향상시키기 위해 추가 학습을 진행하는 과정을 의미합니다. 이 과정을 통해 모델은 일반적인 패턴을 이해하는 것에서 더 나아가 특정 문제를 해결하는 데 필요한 지식을 얻게 됩니다.파인튜닝의 세부 과정사전 학습 모델 선택:일반적으로 대규모 데이터셋으로 학습된 언어 모델(예: BERT, GPT)이나 이미지 처리 모델(예: VGG, ResNet)을 사용합니다. 이러한 모델들은 이미 다양한 일반적인 데이터를 통해 기초적인 언어 또는 이미지 인식을 학습한 상태입니다.예를 들어, BERT 모델은 다양한 텍스트를 학습하여 문법과 문맥을 ..

AI Development/자연어처리 2024. 8. 13. 10:26
BERT

BERT란?BERT는 Bidirectional Encoder Representations from Transformers의 약자로, Google에서 개발한 자연어 처리(NLP) 모델입니다. BERT는 문맥을 양방향으로 이해할 수 있는 사전 학습된 트랜스포머 모델로, NLP 분야에서 혁신적인 변화를 가져왔습니다.BERT의 특징양방향성:BERT는 문장의 왼쪽과 오른쪽 문맥을 동시에 고려하여 단어를 이해합니다. 이는 기존의 언어 모델들이 주로 한 방향으로만 문맥을 고려하는 것과 대비됩니다. 양방향성을 통해 문장의 맥락을 더 깊이 이해할 수 있습니다.사전 학습 및 미세 조정(Fine-tuning):BERT는 방대한 양의 텍스트 데이터로 사전 학습(pre-training)된 후, 특정 작업에 맞춰 미세 조정(fi..

AI Development/자연어처리 2024. 8. 11. 11:14
이전 1 다음
이전 다음
250x250
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG
  • defaultparameter
  • 이벤트유효성
  • 데이터옵션
  • gradientclipping
  • 코랩 워드클라우드
  • 인스턴스 생명주기
  • 리액트
  • PROMISE
  • 코랩 워드클라우드 한글깨짐
  • 이벤트에미터
  • ML
  • dl
  • 사용자정의이벤트
  • 프론트엔드
  • 콜백callback
  • 코랩 한글깨짐
  • 로짓함수
  • 컴포넌트간데이터전달
  • 사전학습모델
  • AI
  • async
  • Await
  • 리액트 폴더구조
  • 자연어처리
  • 컴포넌트간통신
  • KoELECTRA
  • NLP
  • 인스턴스 옵션
  • transformer
  • 인스턴스 구조
more
«   2026/02   »
일 월 화 수 목 금 토
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바