XGBoost는 "Extreme Gradient Boosting"의 약자로, 머신러닝에서 주로 사용되는 매우 강력하고 효율적인 알고리즘이다. XGBoost는 회귀와 분류 문제 모두에 사용할 수 있으며, 특히 대규모 데이터 세트에서 뛰어난 성능을 보이는 것으로 유명하다. 개념XGBoost는 여러 개의 약한 학습기(보통 결정 트리)를 결합하여 강력한 모델을 만드는 앙상블 학습 기법의 일종이다. 앙상블 학습은 여러 개의 모델을 결합해 더 좋은 성능을 얻는 방법을 의미한다. XGBoost는 특히 그래디언트 부스팅(Gradient Boosting)이라는 앙상블 방법을 사용하며, 이는 각 모델이 이전 모델의 오류를 줄이는 방향으로 학습하는 것을 의미한다.비유XGBoost를 비유하자면, 시험 준비 과정에서의 피드백을..