하이퍼파라미터는 모델이 학습을 할 때 사용되는 설정값들로, 모델 학습 과정 외부에서 설정되는 변수입니다.모델의 구조나 학습 방식에 영향을 미치는 값들을 의미하며, 이 값들은 학습 과정에서 변경되지 않습니다.예시:학습률(learning rate): 모델이 학습할 때, 가중치(weight)를 얼마나 크게 또는 작게 변경할지를 결정하는 값입니다.배치 크기(batch size): 한 번에 모델이 학습할 데이터의 양을 의미합니다. 예를 들어, 배치 크기가 32라면 한 번의 학습에서 32개의 데이터를 사용하게 됩니다.에포크 수(epoch): 전체 데이터셋을 몇 번 반복해서 학습할지를 결정하는 값입니다.하이퍼파라미터는 모델의 성능에 큰 영향을 미치기 때문에, 적절한 값을 찾기 위해 여러 번 실험을 통해 최적화를 시도..